Abstract

BackgroundOnset, development and progression of atherosclerosis are complex multistep processes. Many aspects of atherogenesis are not yet properly known. This study investigates the changes in vasculature that contribute to switching of vascular cells towards atherogenesis, focusing mainly on ageing.MethodsDatabases including PubMed, MEDLINE and Google Scholar were searched for published articles without any date restrictions, involving atherogenesis, vascular homeostasis, aging, gene expression, signaling pathways, angiogenesis, vascular development, vascular cell differentiation and maintenance, vascular stem cells, endothelial and vascular smooth muscle cells.ResultsAtherogenesis is a complex multistep process that unfolds in a sequence. It is caused by alterations in: epigenetics and genetics, signaling pathways, cell circuitry, genome stability, heterotypic interactions between multiple cell types and pathologic alterations in vascular microenvironment. Such alterations involve pathological changes in: Shh, Wnt, NOTCH signaling pathways, TGF beta, VEGF, FGF, IGF 1, HGF, AKT/PI3K/ mTOR pathways, EGF, FOXO, CREB, PTEN, several apoptotic pathways, ET – 1, NF-κB, TNF alpha, angiopoietin, EGFR, Bcl − 2, NGF, BDNF, neurotrophins, growth factors, several signaling proteins, MAPK, IFN, TFs, NOs, serum cholesterol, LDL, ephrin, its receptor pathway, HoxA5, Klf3, Klf4, BMPs, TGFs and others.This disruption in vascular homeostasis at cellular, genetic and epigenetic level is involved in switching of the vascular cells towards atherogenesis. All these factors working in pathologic manner, contribute to the development and progression of atherosclerosis.ConclusionThe development of atherosclerosis involves the switching of gene expression towards pro-atherogenic genes. This happens because of pathologic alterations in vascular homeostasis. When pathologic alterations in epigenetics, genetics, regulatory genes, microenvironment and vascular cell biology accumulate beyond a specific threshold, then the disease begins to express itself phenotypically. The process of biological ageing is one of the most significant factors in this aspect as it is also involved in the decline in homeostasis, maintenance and integrity.The process of atherogenesis unfolds sequentially (step by step) in an interconnected loop of pathologic changes in vascular biology. Such changes are involved in ‘switching’ of vascular cells towards atherosclerosis.

Highlights

  • Onset, development and progression of atherosclerosis are complex multistep processes

  • Two thousand three hundred sixty-three (2363) were excluded after screening of title/abstract, 189 were excluded, 5 articles were excluded during data extraction

  • Dysregulated signaling pathways alter vascular homeostasis and contribute to the disease progression we investigate how dysregulated signaling pathways such as Wnt, Hedge hog and Notch signaling pathways contribute to the switching of vascular cells towards atherogenesis

Read more

Summary

Introduction

Development and progression of atherosclerosis are complex multistep processes. This study investigates the changes in vasculature that contribute to switching of vascular cells towards atherogenesis, focusing mainly on ageing. Atherosclerosis is a disease of elastic arteries, large and medium sized muscular arteries. It mostly occurs in abdominal aorta, coronary artery, popliteal artery and carotid artery. Risk factors involved include smoking, hypertension, hyperlipidemia, diabetes, but these factors are modifiable. Turbulent blood flow plays a major role in switching the vasculature towards proatherogenic state. Gender and family history are non-modifiable risk factors. The role of all these risk factors becomes more and more severe in the development of atherosclerosis. One of the main goals of this study is to explore the role of ageing in

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call