Abstract

We numerically demonstrate the scheme of independent optofluidic switching of nanoparticles on a silicon-based lab-on-a-chip system, using an electronic logic activated ring-assisted Mach-Zehnder interferometer (RAMZI). By using the carrier injection method with a tiny refractive index change of 8.00×10<sup>-4</sup> to adjust the phase delay of a ring resonator sitting on one arm of the MZI, the light passing through could be switched to any output port of MZI followed by a directional coupler (DC). Meanwhile, the trapping force and scattering force of the guided lightwave could provide the actuation for sample delivery. Therefore, the switching logic of the guided mode is mapping to its loaded sample of nanomaterials. Our structure possesses high compactness, scalability, and time-effectiveness and, thereby, it is very appropriate for on-chip optical manipulation. The introduction of the RAMZI and cascaded RAMZIs in an optofluidic chip can form a scalable switching module with an independent electronic logic trigger signal, and make the chip dynamically configurable and scalable, which is very critical and opens a new horizon for the large-scale hybrid electro-optofluidics integration of a lab-on-a-chip system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.