Abstract

We theoretically investigate for the first time an all-optical switch using a silicon-based ring-assisted Mach-Zehnder interferometer (RAMZI), where the switch mechanism relies on Raman-induced loss. Compared to the conventional standalone microring resonator (MRR) switches, the RAMZI structure improves the fabrication tolerances by removing the critical coupling requirement for the MRR without compensating the switch performance. Moreover, the RAMZI structure provides an improved switching speed (5× faster) by shortening the photon lifetime of the MRR. Finally, the inverse Raman scattering of silicon guarantees a single wavelength selectivity for the switch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.