Abstract
We study the band structure and transport properties of ferromagnetic tetragonal silicene nanoribbons by using the non-equilibrium Green's function method. The band structure and spin-dependent conductance are discussed under the combined effect of the external electric field, potential energy, exchange field and the spin-orbit coupling. One can easily realize a phase transition from a semimetallic to a semiconducting state by changing the transverse width of the nanoribbon. Separation of spin-dependent conductances arises from the effect of exchange field and the spin-orbit coupling, while zero-conductance behaviors exhibit spin-dependent band gaps induced by the electric field. We propose a device configuration of four-terminal tetragonal silicene nanoribbon with two central channels. It is found that spin current can be controlled by utilizing two switches. The switch with a high potential barrier can block electrons flowing from the central scattering region into other terminals. Interestingly, applying only one switch can realize spin-dependent zero conductance and large spin polarization. Two switches can provide multiple operations for controlling spin-dependent transport properties. The two-channel ferromagnetic tetragonal silicene nanoribbon can realize an effective separation of spin current, which may be a potential candidate for spintronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.