Abstract

We demonstrate that a dynamical system can be switched from a stable steady state to a previously unknown unstable (saddle) steady state using proportional feedback coupling to an auxiliary unstable system. The simplest one-dimensional nonlinear model is treated analytically, the more complicated two-dimensional pendulum is considered numerically, while the damped Duffing-Holmes oscillator is investigated analytically, numerically, and experimentally. Experiments have been performed using a simplified version of the electronic Young-Silva circuit imitating the dynamical behavior of the Duffing-Holmes system. The physical mechanism behind the switching effect is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.