Abstract

An adaptive feedback technique for stabilizing a priori unknown saddle steady states of dynamical systems is described. The method is based on an unstable low-pass filter combined with a stable low-pass filter. The cutoff frequencies of both filters can be set relatively high. This allows considerable increase in the rate of convergence to the steady state. We demonstrate numerically and experimentally that the technique is robust to the influence of unknown external forces, which change the position of the steady state in the phase space. Experiments have been performed using electrical circuits imitating the damped Duffing-Holmes and chaotic Lindberg systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call