Abstract

We investigate the switching current distributions of ferromagnetic anomalous Josephson junctions subjected to a linearly increasing bias current. Our study uncovers a significant correlation between the position of the switching current distributions and crucial system parameters, such as the strength of the spin–orbit coupling and the Gilbert damping parameter. This indicates that these parameters can be directly determined through experimental measurements. By conducting a comprehensive analysis of the interplay among noise, magnetization, phase dynamics, and the statistical properties of the switching current distribution, we deepen our understanding of these intriguing cryogenic spintronics devices. These findings hold potential for applications in the field of quantum computing architectures and information processing technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call