Abstract

A DC-AC inverter containing no inductors or transformers is presented. The role of the magnetic devices is played by a switched-capacitor (SC) circuit, formed by two subcircuits. Each SC-subcircuit contains 15 basic cells, each one formed by one capacitor, two MOSFETs and two diodes. The sinusoidal output waveform is realized in a staircase, formed by 64 steps. To achieve each step, the inverter operates like a step-up DC-DC converter: by using a certain number of SC-cells, the input voltage is boosted to the voltage required by the step in consideration. Each step is implemented in a large number of switching cycles. In each cycle, the inverter goes through four phases; according to a designed switching sequence, some of the capacitors of the SC-cells involved in the respective step are in a charging process from line, while the others are in a discharging process to the load. The phases 2 and 4 have a regulation role only. A duty cycle control is used. A Fourier analysis evidences the clean AC output waveform. The inverter exhibits low weight, high power density, and enhanced regulation for large changes in line and load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.