Abstract

The paper presents the analysis of a switched optoelectronic microwave load which can work either as a laser-controlled, matched or adjustable, resistive load or as a high-speed optoelectronic microwave switch. The device consists of a GaAs microstrip section controlled by a pulse-operated laser diode via substrate-edge-excitation. The exponential decay of photoconductivity across a longitudinal section of the microstrip forms a laser-induced electron-hole plasma wedge that works as a lossy tapered transmission-line section. The specific microwave power distribution within the excited region is derived in detail, as is the total input reflection coefficient under two special operating conditions (open-ended section and matched section). Numerical results are presented for a 906 nm excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.