Abstract
Chiral organic-inorganic hybrid perovskites offer a promising platform for developing non-linear chiro-optical applications and chiral-induced spin selectivity. Here, we show that achiral hybrid perovskites that have highly ordered ferroelectric domains with orthogonal polarization exhibit planar chirality, as manifested by second harmonic generation with strong circular dichroism. Interestingly, the handedness of the second harmonic generation circular dichroism response can be alternatingly switched between orthogonally polarized domains and domain walls. To correlate the origin of planar chirality in these domains, atom-resolved atomic force microscopy is used to reveal distinct arrangements of atomic rows in these ferroelectric crystals that indicate planar symmetry breaking. Remarkably, a large SHG anisotropy factor of 0.41 is measured at the domain wall. Additionally, spatially resolved two-photon photoluminescence excitation measurement provide evidence of larger Rashba spin-splitting in these chiral ferroelectric domains compared to domain-free areas. Our discoveries of domain-dependent planar chirality and spin texture hold great promise for advancement of domain-specific chiro-optical applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have