Abstract
The aim of the current study was to separate and determine arsenic in water and fish samples using a novel and green solidified floating organic drop microextraction (SFODME), which is based on switchable hydrophilicity solvent (SHS)-assisted procedure followed by hydride generation atomic absorption spectrometry (HG-AAS). The 4-((2-hydroxyquinoline-7-yl)diazenyl)-N-(4-methylisoxazol-3-yl)benzene sulfonamide (HDNMBA) and tertiary amine (4-(2-aminoethyl)-N,N-dimethylbenzylamine (AADMBA) were used as ligand and SHS, respectively. The use of SHS promotes quantitative extraction of arsenic complexes into an extraction solvent (1-undecanol). Some factors that impact extraction recovery were studied. Under optimal conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.005 μg L−1 and 0.015 μg L−1, respectively. The calibration graph was linear up to 900.0 μg L−1 arsenic, with the enrichment factor is 267. The proposed SHS-SFODME methodology for arsenic quantification in water and fish samples was successfully implemented. The environmental friendliness and safety of proposed method were approved by the Analytical Greenness Calculator (AGREE) and the Blue Applicability Grade Index (BAGI) tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.