Abstract

The aim of the current study was to separate and determine arsenic in water and fish samples using a novel and green solidified floating organic drop microextraction (SFODME), which is based on switchable hydrophilicity solvent (SHS)-assisted procedure followed by hydride generation atomic absorption spectrometry (HG-AAS). The 4-((2-hydroxyquinoline-7-yl)diazenyl)-N-(4-methylisoxazol-3-yl)benzene sulfonamide (HDNMBA) and tertiary amine (4-(2-aminoethyl)-N,N-dimethylbenzylamine (AADMBA) were used as ligand and SHS, respectively. The use of SHS promotes quantitative extraction of arsenic complexes into an extraction solvent (1-undecanol). Some factors that impact extraction recovery were studied. Under optimal conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.005 μg L−1 and 0.015 μg L−1, respectively. The calibration graph was linear up to 900.0 μg L−1 arsenic, with the enrichment factor is 267. The proposed SHS-SFODME methodology for arsenic quantification in water and fish samples was successfully implemented. The environmental friendliness and safety of proposed method were approved by the Analytical Greenness Calculator (AGREE) and the Blue Applicability Grade Index (BAGI) tools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call