Abstract

A simple strategy for modulating the fluorescence of MoS2 quantum dots (QDs) is described. The fluorescence of MoS2 QDs was firstly switched off by the addition of Cr(VI), and the quenched fluorescence was further switched on by introducing ascorbic acid (AA) into the mixture. The fluorescence quenching of MoS2 QDs by Cr(VI) was attributed to the fluorescence inner filter effect. After the addition of AA, Cr(VI) was reduced to Cr(III), and the fluorescence was restored. This finding has been applied for the fluorescent sensing of Cr(VI) in drinking water and AA in serum samples. In addition, the present method has been extended for turn-on sensing of an important biomarker alkaline phosphatase (ALP). There is a linear relationship between the fluorescence intensity and the concentrations of ALP in the range from 2.5 to 50U/L, and the limit of detection is 0.34U/L. The results showed MoS2 QDs hold great potential as a multifunctional fluorescent probe for the detection of metal ions, biological small molecules, and proteins. Graphical abstract The fluorescence of MoS2 QDs can be switched off by Cr(VI), and the quenched fluorescence can be further switched on by the addition of ascorbic acid or enzymatically generated ascorbic acid. This allows the selective detection of Cr(VI), ascorbic acid, and alkaline phosphatase based on the fluorescence of MoS2 QDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.