Abstract

Herein, a simple and sensitive ratiometric fluorescence sensing platform to detect alkaline phosphatase (ALP) activity is developed on the basis of yellow fluorescent nitrogen-doped carbon quantum dots (YNCDs). The hydrolysis of ascorbic acid 2-phosphate (AAP) into ascorbic acid (AA) is catalyzed by ALP. Then, AA will react with o-phenylenediamine (OPD) to form 3-(1,2-dihydroxyethyl)furo[3,4b]-quinoxaline (QXD) which is a blue fluorescent quinoxaline derivative with emission at 435nm in the presence of Cu2+. YNCDs have yellow fluorescence emission at 555nm, and can maintain stable in QXD reaction system. Therefore, by utilizing the fluorescence of YNCDs at 555nm as reference signal and the fluorescence of QXD at 435nm as report signal, we can detect the ALP activity by monitoring the fluorescence ratio (F435/F555). The linear range is 0.5-5 U/L, and the limit of detection is 0.14 U/L. An application of this method for the analysis of ALP in human serum has given satisfactory results. A ratiometric fluorescent nanoprobe for ascorbic acid and alkaline phosphatase detection with excellent biocompatible and high sensitivity was successfully constructed based on YNCDs and QXD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call