Abstract

The possibility to switch the damping rate for a one-electron oscillator is demonstrated for an electron that oscillates along the magnetic field axis in a Penning trap. Strong axial damping can be switched on to allow this oscillation to be used for quantum nondemolition detection of the cyclotron and spin quantum state of the electron. Weak axial damping can be switched on to circumvent the backaction of the detection motion that has limited past measurements. The newly developed switch will reduce the linewidth of the cyclotron transition of one-electron by two orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.