Abstract
Large-scale collective motion emerging in a monolayer of vertically vibrated elongated particles is studied. The motion is characterized by recurring swirls, with the characteristic scale exceeding several times the size of an individual particle. Our experiments identified a small horizontal component of the oscillatory acceleration of the vibrating plate in combination with orientation-dependent bottom friction (with respect to horizontal acceleration) as a source for the swirl formation. We developed a continuum model operating with the velocity field and local alignment tensor, which is in qualitative agreement with the experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.