Abstract
AbstractUsing materials with properties similar to those of cells and microorganisms together with innovative fabrication methods, soft and smart microrobots can be developed, with increased adaptability and flexibility toward in vivo applications. These tiny robots are designed to carry out difficult tasks such as noninvasive microsurgery, diagnosis and therapy in complex environments, including viscous media and intricate channels. Moreover, the novel property of the soft materials to respond to stimuli has paved the way for the creation of reconfigurable and smart microrobots with both actuation and function (e.g., sensing, drug delivery) capabilities. This feature article aims to give an overview of the different soft and smart swimming microrobots (less than 1 mm in all dimensions), highlighting some aspects of new materials, their development and the challenges in their processing to obtain highly functional microrobots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.