Abstract

The incompressible Brinkman equation represents the homogenized fluid flow past obstacles that comprise a small volume fraction. In nondimensional form, the Brinkman equation can be characterized by a single parameter that represents the friction or resistance due to the obstacles. In this work, we derive an exact fundamental solution for 2D Brinkman flow driven by a regularized point force and describe the numerical method to use it in practice. To test our solution and method, we compare numerical results with an analytic solution of a stationary cylinder in a uniform Brinkman flow. Our method is also compared to asymptotic theory; for an infinite-length, undulating sheet of small amplitude, we recover an increasing swimming speed as the resistance is increased. With this computational framework, we study a model swimmer of finite length and observe an enhancement in propulsion and efficiency for small to moderate resistance. Finally, we study the interaction of two swimmers where attraction does not occur when the initial separation distance is larger than the screening length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call