Abstract

Cooperative behavior displayed by five steel disks falling in a low-density particle bed involves the formation of upward and downward convex configurations, which resembles the flying pattern of a flock of birds. In this study, we focused on overtaking behavior in two falling disks, which causes the cooperative behavior, and we investigated the effects of differences in the disk release time and the initial disk separation distance on the falling behavior of the disks experimentally. Expanded polystyrene (EPS) particles (diameter 5.08 mm, mass 1.45 mg) were used as the bed particles and steel disks (diameter 25.4 mm, thickness 5.22 mm, mass 20.2 g) were used as the falling disks. We released one to five disks with various disk release time differences (0–0.154 s) and initial separation distances (0–100 mm). We recorded the disk falling behavior in the particle bed with a high-speed video camera (500 fps) and analyzed the behavior with image analysis software. Five-disk cooperative behavior similar to that reported in the literature occurred in our experimental setup. In the two-disk experiments, we observed overtaking behavior for an initial separation distance of 10 mm and release time difference of ≤ 0.076 s, and for an initial separation distance of ≤ 60 mm and release time difference of 0.02–0.03 s. The overtaking behavior arose from the decrease in the falling velocity of the first disk released. The EPS particle packing fraction in the area above the disk one disk diameter wide and a quarter of the disk diameter high determined the disk falling velocity. This mechanism was explained by the displacement behavior of EPS particles around the disks as the disks fell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call