Abstract
The cubic-quintic Swift-Hohenberg equation (SH35) provides a convenient order parameter description of several convective systems with reflection symmetry in the layer midplane, including binary fluid convection. We use SH35 with an additional quadratic term to determine the qualitative effects of breaking the midplane reflection symmetry on the properties of spatially localized structures in these systems. Our results describe how the snakes-and-ladders organization of localized structures in SH35 deforms with increasing symmetry breaking and show that the deformation ultimately generates the snakes-and-ladders structure familiar from the quadratic-cubic Swift-Hohenberg equation. Moreover, in nonvariational systems, such as convection, odd-parity convectons necessarily drift when the reflection symmetry is broken, permitting collisions among moving localized structures. Collisions between both identical and nonidentical traveling states are described.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have