Abstract

This study explores the effect of adding a pylon to the leading edge of a cavity flameholder in a scramjet combustor. Data were obtained through a combination of wind-tunnel experimentation and steady-state computational fluid dynamics. Wind-tunnel data were collected using surface pressure taps, static and total probe data, shadowgraph flow visualization, and particle image velocimetry. Computational fluid dynamics models were solved using the commercial FLUENT software. The addition of an intrusive device to the otherwise low-drag cavity flamebolder offers a potential means of improving combustor performance by enabling combustion products to propagate into the main combustor flow via the low-pressure region behind the pylon. This study characterized the flowfield effects of adding the pylon as well as the effect of changing Reynolds numbers over the range of approximately 33 x 10 6 to 55 × 10 6 m ―1 at a Mach number of 2. The addition of the pylon resulted in approximately 3 times the mass flow passing through the cavity compared with the cavity with no pylon installed. Reynolds number effects were weak. The addition of the pylon led to the cavity fluid traveling up to the top of the pylon wake and significantly increasing the exposure and exchange of cavity fluid with the main combustor flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.