Abstract

We study the structural properties of self-attracting walks in d dimensions using scaling arguments and Monte Carlo simulations. We find evidence of a transition analogous to the Theta transition of polymers. Above a critical attractive interaction u(c), the walk collapses and the exponents nu and k, characterizing the scaling with time t of the mean square end-to-end distance <R2> approximately t(2nu) and the average number of visited sites <S> approximately t(k), are universal and given by nu=1/(d+1) and k=d/(d+1). Below u(c), the walk swells and the exponents are as with no interaction, i.e., nu=1/2 for all d, k=1/2 for d=1 and k=1 for d>/=2. At u(c), the exponents are found to be in a different universality class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.