Abstract

We consider the dynamics and kinetic roughening of interfaces embedded in uniformly random media near percolation treshold. In particular, we study simple discrete ``forest fire'' lattice models through Monte Carlo simulations in two and three spatial dimensions. An interface generated in the models is found to display complex behavior. Away from the percolation transition, the interface is self-affine with asymptotic dynamics consistent with the Kardar-Parisi-Zhang universality class. However, in the vicinity of the percolation transition, there is a different behavior at earlier times. By scaling arguments we show that the global scaling exponents associated with the kinetic roughening of the interface can be obtained from the properties of the underlying percolation cluster. Our numerical results are in good agreement with theory. However, we demonstrate that at the depinning transition, the interface as defined in the models is no longer self-affine. Finally, we compare these results with those obtained from a more realistic reaction-diffusion model of slow combustion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.