Abstract
This study proposes an efficient method for computing State Vectors in Sequence-to-Sequence (SVSeq2Seq) architecture to improve the performance of sequence data forecasting, which associates each element with other elements instead of relying only on nearby elements. First, the dependency between two elements is adaptively captured by calculating the relative importance between hidden layers. Second, tensor train decomposition is used to address the issue of dimensionality catastrophe. Third, we further select seven instantiated baseline models for data prediction and compare them with our proposed model on six real-world datasets. The results show that the Mean Square Error (MSE) and Mean Absolute Error (MAE) of our SVSeq2Seq model exhibit significant advantages over the other seven baseline models in predicting the three datasets, i.e., weather, electricity, and PEMS, with MSE/MAE values as low as 0.259/0.260, 0.186/0.285 and 0.113/0.222, respectively. Furthermore, the ablation study demonstrates that the SVSeq2Seq model possesses distinct advantages in sequential forecasting tasks. It is observed that replacing SVSeq2Seq with LPRcode and NMTcode resulted in an increase under an MSE of 18.05 and 10.11 times, and an increase under an MAE of 16.54 and 9.8 times, respectively. In comparative experiments with support vector machines (SVM) and random forest (RF), the performance of the SVSeq2Seq model is improved by 56.88 times in the weather dataset and 73.78 times in the electricity dataset under the MSE metric, respectively. The above experimental results demonstrate both the exceptional rationality and versatility of the SVSeq2Seq model for data forecasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.