Abstract
BackgroundRecently, the dental age estimation method developed by Cameriere has been widely recognized and accepted. Although machine learning (ML) methods can improve the accuracy of dental age estimation, no machine learning research exists on the use of the Cameriere dental age estimation method, making this research innovative and meaningful.AimThe purpose of this research is to use 7 lower left permanent teeth and three models [random forest (RF), support vector machine (SVM), and linear regression (LR)] based on the Cameriere method to predict children's dental age, and compare with the Cameriere age estimation.Subjects and methodsThis was a retrospective study that collected and analyzed orthopantomograms of 748 children (356 females and 392 males) aged 5–13 years. Data were randomly divided into training and test datasets in an 80–20% proportion for the ML algorithms. The procedure, starting with randomly creating new training and test datasets, was repeated 20 times. 7 permanent developing teeth on the left mandible (except wisdom teeth) were recorded using the Cameriere method. Then, the traditional Cameriere formula and three models (RF, SVM, and LR) were used to estimate the dental age. The age prediction accuracy was measured by five indicators: the coefficient of determination (R2), mean error (ME), root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE).ResultsThe research showed that the ML models have better accuracy than the traditional Cameriere formula. The ME, MAE, MSE, and RMSE values of the SVM model (0.004, 0.489, 0.392, and 0.625, respectively) and the RF model (− 0.004, 0.495, 0.389, and 0.623, respectively) were lower with the highest accuracy. In contrast, the ME, MAE, MSE and RMSE of the European Cameriere formula were 0.592, 0.846, 0.755, and 0.869, respectively, and those of the Chinese Cameriere formula were 0.748, 0.812, 0.890 and 0.943, respectively.ConclusionsCompared to the Cameriere formula, ML methods based on the Cameriere’s maturation stages were more accurate in estimating dental age. These results support the use of ML algorithms instead of the traditional Cameriere formula.
Highlights
The age estimation of teeth plays an important role in both clinical and forensic medicine
The research showed that the machine learning (ML) models have better accuracy than the traditional Cameriere formula
Compared to the Cameriere formula, ML methods based on the Cameriere’s maturation stages were more accurate in estimating dental age. These results support the use of ML algorithms instead of the traditional Cameriere formula
Summary
The age estimation of teeth plays an important role in both clinical and forensic medicine. Many studies have investigated various methods to accurately estimate age in both living and deceased individuals, especially in children and adolescents. An accurate estimation of age is crucial, as it can be applied to determine the appropriate sentencing time and treatment strategy [1, 2]. Sophisticated medical techniques widely applied to age estimation include analyzing skeletal maturity or dental development [3, 4]. The chronic diseases or nutritional deficiencies that an individual experienced during their growth and development may result in age estimate deviations. The dental age estimation method developed by Cameriere has been widely recognized and accepted. Machine learning (ML) methods can improve the accuracy of dental age estimation, no machine learning research exists on the use of the Cameriere dental age estimation method, making this research innovative and meaningful
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.