Abstract

Recently, multi-label learning has received much attention in the applications of image annotation and classification. However, most existing multi-label learning methods do not consider the consistency of labels, which is important in image annotation, and assume that the complete label assignment for each training image is available. In this paper, we focus on the issue of multi-label learning with missing labels, where only partial labels are available, and propose a new approach, namely SVMMN for image annotation. SVMMN integrates both example smoothness and class smoothness into the criterion function. It not only guarantees the large margin but also minimizes the number of samples that live in the large margin area. To solve SVMMN, we present an effective and efficient approximated iterative algorithm, which has good convergence. Extensive experiments on three widely used benchmark databases in image annotations illustrate that our proposed method achieves better performance than some state-of-the-art multi-label learning methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.