Abstract

Image annotation has attracted a lot of research interest, and multi-label learning is an effective technique for image annotation. How to effectively exploit the underlying correlation among labels is a crucial task for multi-label learning. Most existing multi-label learning methods exploit the label correlation only in the output label space, leaving the connection between the label and the features of images untouched. Although, recently some methods attempt toward exploiting the label correlation in the input feature space by using the label information, they cannot effectively conduct the learning process in both the spaces simultaneously, and there still exists much room for improvement. In this paper, we propose a novel multi-label learning approach, named multi-label dictionary learning (MLDL) with label consistency regularization and partial-identical label embedding MLDL, which conducts MLDL and partial-identical label embedding simultaneously. In the input feature space, we incorporate the dictionary learning technique into multi-label learning and design the label consistency regularization term to learn the better representation of features. In the output label space, we design the partial-identical label embedding, in which the samples with exactly same label set can cluster together, and the samples with partial-identical label sets can collaboratively represent each other. Experimental results on the three widely used image datasets, including Corel 5K, IAPR TC12, and ESP Game, demonstrate the effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.