Abstract

Artificial neural networks, the support vector machine (SVM), and other machine learning methods for the classification of molecules are often considered as a "black box", since the molecular features that are most relevant for a given classifier are usually not presented in a human-interpretable form. We report on an SVM-based algorithm for the selection of relevant molecular features from a trained classifier that might be important for an understanding of ligand-receptor interactions. The original SVM approach was extended to allow for feature selection. The method was applied to characterize focused libraries of enzyme inhibitors. A comparison with classical Kolmogorov-Smirnov (KS)-based feature selection was performed. In most of the applications the SVM method showed sustained classification accuracy, thereby relying on a smaller number of molecular features than KS-based classifiers. In one case both methods produced comparable results. Limiting the calculation of descriptors to only the most relevant ones for a certain biological activity can also be used to speed up high-throughput virtual screening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.