Abstract
KOSPI200 선물 트레이딩을 위해 업계에서는 여러 전략으로 포트폴리오를 구성해서 운용한다. 동일한 전략 모음을 갖고 있더라도 포트폴리오를 어떻게 구성하느냐에 따라 수익은 크게 차이가 난다. 시장 상황에 맞는 전략들로 포트폴리오를 구성하는 것은 오랜 경험과 탁월한 노하우가 있어야하는 어려운 작업이다. 본 논문에서는 SVM을 활용하여 쉽고 빠르게 적절한 전략 포트폴리오를 구성하는 방법을 제시하였다. 본 논문에서 제안한 시스템의 성과는 벤치마킹의 성과와 비교하여 2배 이상의 수익을 내는 것을 확인하였다. 1990.01.03~2011.11.04 동안의 KOSPI200 데이터 중 이전 80%의 데이터로 학습을 하고 최근 20%의 데이터로 성능을 시험하였다. 각 전략별로 선택여부를 판별하는 SVM모델을 만들고 그 결과를 바탕으로 포트폴리오를 구성하였다. 벤치마킹을 위해 KOSPI200 선물을 2계약 매수한 경우의 수익, 시험 시작 직전 30일간 최고 수익을 낸 2개 전략의 수익, 실제 최고 수익을 낸 전략 2개를 보유했을 때의 수익과 비교하였다. 매매 비용을 반영하지 않을 때는 벤치마킹은 132.2~510.37pt의 수익을 냈고, 본 시스템은 1072.36~1140.91pt의 수익을 보여주었다. 그리고 거래비용을 감안하면 벤치마킹은 130.44~502.41pt의 수익을 냈고, 본 시스템은 706.22pt~768.95pt의 수익을 나타내었다. 본 논문은 기계학습을 통한 전략 포트폴리오를 구성하는 방안이 유의미하며 실전에 활용할 수 있음을 보여주었다. 이를 바탕으로 여러 전략과 다양한 시장에 적용해서 안정성을 검증하면 견고한 상용 솔루션으로 발전시킬 수 있을 것이다. 그리고 자금관리 기법을 더 반영한다면 수익을 더욱 크게 향상시킬 수 있을 것이다. System trading is becoming more popular among Korean traders recently. System traders use automatic order systems based on the system generated buy and sell signals. These signals are generated from the predetermined entry and exit rules that were coded by system traders. Most researches on system trading have focused on designing profitable entry and exit rules using technical indicators. However, market conditions, strategy characteristics, and money management also have influences on the profitability of the system trading. Unexpected price deviations from the predetermined trading rules can incur large losses to system traders. Therefore, most professional traders use strategy portfolios rather than only one strategy. Building a good strategy portfolio is important because trading performance depends on strategy portfolios. Despite of the importance of designing strategy portfolio, rule of thumb methods have been used to select trading strategies. In this study, we propose a SVM-based strategy portfolio management system. SVM were introduced by Vapnik and is known to be effective for data mining area. It can build good portfolios within a very short period of time. Since SVM minimizes structural risks, it is best suitable for the futures trading market in which prices do not move exactly the same as the past. Our system trading strategies include moving-average cross system, MACD cross system, trend-following system, buy dips and sell rallies system, DMI system, Keltner channel system, Bollinger Bands system, and Fibonacci system. These strategies are well known and frequently being used by many professional traders. We program these strategies for generating automated system signals for entry and exit. We propose SVM-based strategies selection system and portfolio construction and order routing system. Strategies selection system is a portfolio training system. It generates training data and makes SVM model using optimal portfolio. We make <TEX>$m{\times}n$</TEX> data matrix by dividing KOSPI 200 index futures data with a same period. Optimal strategy portfolio is derived from analyzing each strategy performance. SVM model is generated based on this data and optimal strategy portfolio. We use 80% of the data for training and the remaining 20% is used for testing the strategy. For training, we select two strategies which show the highest profit in the next day. Selection method 1 selects two strategies and method 2 selects maximum two strategies which show profit more than 0.1 point. We use one-against-all method which has fast processing time. We analyse the daily data of KOSPI 200 index futures contracts from January 1990 to November 2011. Price change rates for 50 days are used as SVM input data. The training period is from January 1990 to March 2007 and the test period is from March 2007 to November 2011. We suggest three benchmark strategies portfolio. BM1 holds two contracts of KOSPI 200 index futures for testing period. BM2 is constructed as two strategies which show the largest cumulative profit during 30 days before testing starts. BM3 has two strategies which show best profits during testing period. Trading cost include brokerage commission cost and slippage cost. The proposed strategy portfolio management system shows profit more than double of the benchmark portfolios. BM1 shows 103.44 point profit, BM2 shows 488.61 point profit, and BM3 shows 502.41 point profit after deducting trading cost. The best benchmark is the portfolio of the two best profit strategies during the test period. The proposed system 1 shows 706.22 point profit and proposed system 2 shows 768.95 point profit after deducting trading cost. The equity curves for the entire period show stable pattern. With higher profit, this suggests a good trading direction for system traders. We can make more stable and more profitable portfolios if we add money management module to the system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have