Abstract

The unending lifestyle stressors along with genetic predisposition, environmental factors and infections have pushed the immune system into a state of constant activity, leading to unresolved inflammation and increased vulnerability to chronic diseases. Liver fibrosis, an early-stage liver condition that increases the risk of developing liver diseases like cirrhosis and hepatocellular carcinoma, is among the various diseases linked to inflammation that dominate worldwide morbidity and mortality. We developed a mouse model with low-grade lipopolysaccharide (LPS) exposure that shows hepatic damage and a pro-inflammatory condition in the liver. We show that inflammation and oxidative changes increase autophagy in liver cells, a degradation process critical in maintaining cellular homeostasis. Our findings from in vivo and in vitro studies also show that induction of both inflammation and autophagy trigger epithelial-mesenchymal transition (EMT) and pro-fibrotic changes in hepatocytes. Inhibiting the inflammatory pathways with a naturally occurring NF-κB inhibitor and antioxidant, melatonin, could assuage the changes in autophagy and activation of EMT/fibrotic pathways in hepatocytes. Taken together, this study shows a pathway linking inflammation and autophagy which could be targeted for future drug development to delay the progression of liver fibrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call