Abstract
Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and increasing as the population becomes more urbanised (Couth and Trois, 2010). Waste from urban areas across Africa is essentially dumped on the ground with little or no control over the relative liquid and gaseous emissions. The Clean Development Mechanism (CDM), from the 1997 Kyoto Protocol, has been a vehicle to initiate projects to control GHG emissions in Africa. However, very few CDM biogas-to-energy projects have been implemented and properly registered in developing countries, and only one in Africa (Couth et al., 2010). This chapter presents an integrated approach to quantifying greenhouse gas (GHG) emissions arising from the disposal of solid waste in Africa (and other developing countries) and reports on a large research project on Zero Waste and Waste Management Strategies towards the effective reduction of carbon emissions in the atmosphere from developing countries conducted by the University of KwaZulu-Natal since 2002. It has been estimated that over 60 million cubic metres of waste was produced in South Africa in the year 2010; 90% of these are managed by local authorities (LA) and are still disposed in landfills, at an estimated cost of over ZAR10 billion per annum (1ZAR=7US$). The focus of the study was to assist Local Authorities in the design of appropriate waste management strategies by providing a quantitative estimate of the potential for GHG reductions and landfill space savings that can be achieved through ad hoc zero waste strategies, assessing their economic feasibility and so addressing specific knowledge gaps regarding the quantity and quality of the local MSW stream. Africa is the world's second-largest and most-populous continent after Asia. With around one billion people in 61 territories, it accounts for almost 15% of the world's population, of which 60% is rural and 40% urban or peri-urban. The rural growth rate is reported as static (0%) with an increasing urban population growth rate of 6.6% (Earthtrends, 2008). Rural waste is traditionally managed through reuse, recycling and composting. Urban waste is primarily disposed in landfills generating methane (CH4) gas, which is 21-25 times more potent as a GHG than the natural carbon dioxide (CO2) also produced by anaerobically
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.