Abstract

The extensive and uncontrolled use of plastic-based products and their indiscriminate disposal with the ended-up lifetime have led to the emergence of a global concern: microplastics. To counter this situation, we proposed a simple and universally applicable approach to treat microplastics. We designed a microplastic-based TENG (MP-TENG) to utilize microplastics themselves as a renewable energy resource. By employing the intrinsic triboelectric propertie of microplastic, we could convert microplastic waste into electrical energy. The structure of the TENG device was optimized by analyzing the TENG output difference according to the structural design parameters. And we successfully generated stable energy from the mechanical movement of polypropylene, polyethylene terephthalate, polystyrene, and mixed microplastics using the optimized system. We confirmed that the aging period of MPs did not affect the TENG output. Lastly, we verified the feasibility of applying the proposed microplastic-based system as a power source to operate electronic devices in real life. This study presents a novel approach to harnessing microplastic as a new type of resource to harvest renewable and sustainable energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call