Abstract

The aim of this work was to evaluate the feasibility of the use of different industrial and agricultural wastes as reactive materials in Permeable Reactive Barriers (PRB) for Acid Mine Drainage (AMD) remediation. Sugar foam (SF), paper mill sludge (PMS), drinking water sludge (DWS) and olive mill waste (OMW) were evaluated in terms of pH neutralization and metal removal from AMD. Laboratory batch tests and continuous pilot scale up-flow columns containing 82% of Volcanic Slag (VS), as porous fill material, and 18% w/w of one of the industrial and agricultural wastes previously indicated, were tested.From the batch tests it was observed that the reactive material presenting the best results were the SF and the PMS. The results obtained in all the PRB were accurately described by a pseudo-first order model, presenting coefficient of determination higher than 0.96 in all the cases.During the continuous operation of the PRB, the porosity and hydraulic retention time (HRT) of most of the up-flow columns strongly decreased due to chemical precipitation and biofilm growth. The SF presented a significant number of fine particles that were washed out by the liquid flow, generating an effluent with very high total suspended solid concentration. Despite SF was the material with the highest alkalinity potential, the reduction of the HRT limited its neutralization and metal removal capacity. PMS and DWS presented the best pollutant removal yields in the continuous operation of the PRB, ranging from 55 to 99% and 55–95% (except in the case of the Mn), respectively. These results allowed the metal removal from the AMD. Additionally, these wastes presented very good biological sulphate reduction.Based on these results, the use of PMS and DWS as reactive material in PRB would allow to simultaneously valorise the industrial waste, which is very interesting within the circular economy framework, and to remove metals from the AMD by means of a low-cost and environmentally sustainable procedure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call