Abstract

This study focuses on the recovery of boron from oilfield-produced water employing the chemical oxo-precipitation method. Zirconium chloride was used to recover boron as a sustainable approach. The study aimed to optimize the parameters to achieve the highest possible boron recovery. It also sought to investigate the impact of operating parameters, including pH, time, oxidizing agent, and dosage of the precipitant, on boron recovery. The optimal operating conditions were optimized through response surface methodology (RSM). A comparative study was conducted with barium chloride (chemical oxo-precipitation) and calcium hydroxide (conventional precipitation). The results indicated that the highest boron recovery was achieved at 97% by utilizing chemical oxo-precipitation with zirconium chloride. Meanwhile, barium chloride and calcium hydroxide recovered boron at 89% and 88%, respectively. The precipitates were characterized by Fourier transform infrared (FTIR), x-ray fluorescence (XRF), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDX). The XRF and EDX characterization analysis confirmed the highest boron recovery at 97% with zirconium chloride. SEM showed that zirconium chloride precipitated visible amorphous insoluble solids. The chemical-oxo-precipitation procedure outperforms barium chloride and calcium hydroxide precipitation. The zirconium chloride oxo-precipitation method was proved to be a greener solution for boron recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.