Abstract
This study investigates the use of a UASB (Upflow Anaerobic Sludge Blanket) reactor operating under continuous anoxic conditions to remediate Pb(II) contamination in aqueous environments. Two experimental runs were conducted to evaluate the microbiome’s performance in removing Pb(II) at varying concentrations, ranging from 80 to 2000 ppm, while monitoring nitrate and Pb(II) levels. Metabarcoding of the 16S rRNA gene was done to understand the detoxification mechanisms utilised by the microbial community in Pb(II) removal. The system demonstrated high robustness, achieving up to 99% Pb(II) removal efficiency with sufficient nutrient availability, particularly at 15 g/L yeast extract (YE), compared to lower nutrient levels of 5 g/L YE. Denitrification was identified as the dominant mechanism of detoxification, supported by additional processes such as biosorption, sulfur-reducing bacterial activity, bioprecipitation, and bioremoval. Analysis of the precipitate recovered from the reactor indicated the presence of elemental lead, PbS, and PbO, highlighting the potential for lead recovery. These findings suggest that the system not only effectively removes Pb(II) from contaminated environments but also offers a sustainable pathway for lead recovery through smelting, making it a promising circular bioremediation strategy. The results indicate that this biological approach is a viable solution for lead pollution and recovery in industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.