Abstract
Nowadays, all researchers are focused on combating the pandemic COVID-19. According to recent statistics, most patients are managed at home. An over-the-counter (OTC) triple action formula containing paracetamol (PAR), aspirin (ASP), and diphenhydramine (DIPH) is widely prescribed for pain, fever and as night-time sleep aid. For COVID-19 patients, this combination is now suggested as part of symptomatic therapy and prophylaxis. In this work, two simple liquid chromatographic approaches were designed for simultaneous determination of PAR, ASP, and DIPH in Excedrin® PM caplets, beside three specified official toxic impurities, namely, p-aminophenol, p-nitrophenol, and salicylic acid. The first method comprised high-performance thin-layer chromatographic separation coupled with densitometric quantification, on silica gel HPTLC 60 F254 aluminium sheets as the stationary phase, ethyl acetate–methanol-aqueous ammonium hydroxide (10.0: 2.0: 0.1, by volume) as the developing system and scanning was performed at 210.0 nm. The second one is a high-performance liquid chromatography coupled with diode array detector. Successful separation of the six components was performed on XTerra C18 column with isocratic elution of mobile phase 0.1% triethylamine acidified water: methanol (70:30, v/v) adjusted with o-phosphoric acid to pH 3.0 and methanol (90:10, v/v) with flow rate programming and detection at 210.0 nm. Validation of the proposed methods was performed according to ICH guidelines. Both methods were successfully used for quality control of the cited drugs in their marketed formulation. Moreover, the in-vitro release study was monitored using the proposed HPLC-DAD method. The greenness profile of the proposed methods was assessed and comparatively evaluated through various assessment tools, specifically; the analytical eco-scale system, national environmental method index (NEMI), green analytical procedure index (GAPI) and analytical greenness (AGREE) metric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.