Abstract

BackgroundSustainable land management interventions were introduced in Geda watershed in 2012 to reduce soil erosion, improve water infiltration, and increase plant-carbon inputs into the soil. This study explored the impact of the interventions on biomass production, carbon stock, and carbon sequestration. Stratified sampling was employed in the main and the dry seasons in the treated and untreated sub-watersheds that are found adjacent to each other. Above- and below-ground plant biomass, soil bulk density and organic carbon in 0–15- and 15–30-cm depths, and soil moisture content in 0–20- and 20–40-cm depths were collected from the crop, grazing, and tree lucerne plots. All analyses were performed based on standard procedures.ResultsPlant biomass production, carbon stock, and carbon sequestration varied highly significantly (P ≤ 0.001) among sub-watersheds, landscape positions, and land uses. Higher mean values were observed for treated sub-watershed, lower landscape position, and tree lucerne plot. The higher mean values in the lower landscape position of the treated sub-watershed were due to tree lucerne plantation. Similarly, topsoil (0–15 cm) carbon stock was statistically higher (P ≤ 0.001) in the treated sub-watershed and at tree lucerne plot (P ≤ 0.05). In addition, carbon stock by sub-surface soil (15–30 cm) was significantly higher (P ≤ 0.001) in the treated sub-watershed under crop and grazing lands but the higher value was in cropland and in the upper position. This could be due to the decomposition of organic materials from biomasses of crops and biological supporting measures (tree lucerne and Phalaris) facilitated by tillage. Six years of sustainable land management interventions led to the sequestration of 12.25, 7.77, and 13.5 Mg C ha−1 under cropland, tree lucerne, and grazing plots, respectively.ConclusionSustainable land management interventions revealed auspicious ecological impacts in Geda watershed in terms of improving plant biomass production, carbon stock, and correspondingly capturing higher carbon dioxide equivalent taking untreated sub-watershed as a baseline. Prohibition of free grazing was the key element of the intervention to reduce biomass export and increase carbon sequestration in the treated sub-watershed. Thus, sustaining tree lucerne plants as a conservation measure and the prohibition of free grazing practices are principally essential.

Highlights

  • Sustainable land management interventions were introduced in Geda watershed in 2012 to reduce soil erosion, improve water infiltration, and increase plant-carbon inputs into the soil

  • About 10–14 Mg C ha−1 was stored in the treated sub-watershed due to the introduction of the sustainable land management (SLM) technologies taking the conventional practice in the untreated sub-watershed as a baseline (Fig. 6)

  • The sub-watershed treated with different SLM interventions showed improved plant biomass production, reduced plant biomass export from the landscape, enhanced carbon stock by plant biomass and the soil, and correspondingly captured significantly higher carbon dioxide equivalent compared to the untreated subwatershed

Read more

Summary

Introduction

Sustainable land management interventions were introduced in Geda watershed in 2012 to reduce soil erosion, improve water infiltration, and increase plant-carbon inputs into the soil. Climate change is a threat to the livelihood and overall development of most countries in the world (Akudugu and Alhassan 2012; Asante and Amuakwa-Mensah 2015) It is a major challenge, especially for smallholder farmers in sub-Saharan Africa, where Ethiopia is among the highly affected countries in the region (FAO 2014). Climate change is expected to continue its negative impacts on farm activities in most developing countries (Issahaku and Maharjan 2014) It affects the agricultural sector and resource-limited poor people because of their weak adaptive capacities to its negative impacts (Keller 2009; Lewis et al 2011). Sustainable land management (SLM) interventions have been implemented since 2008 (Ademe et al, 2017; Adimassu et al 2017)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call