Abstract
BackgroundTrees in natural forests are a major contributor to atmospheric methane (CH4), yet these emissions have never been investigated in reclaimed forests. Our study aimed to assess the magnitude, seasonality, drivers, and contributions of tree CH4 emissions to ecosystem CH4 flux in the reclaimed forests. We measured CH4 emissions from different emission pathways, including the stems of trees (Populus euramericana, Metasequoia glyptostroboides, and Camphora officinarum), shoots of herbs (Carex breviculmis and Carex dispalata), and soils in the two reclaimed forests with reclamation periods of 12 and 5 years. We identified factors controlling seasonal tree CH4 emissions and measured tree morphological variables (diameter at breast height, wood density, and lenticel density) to determine species differences in emissions.ResultsCH4 emissions from trees in the 12-year-old reclaimed forest were significantly higher than those in the 5-year-old forest. Seasonal variations in tree CH4 emissions were primarily driven by growth stage and soil parameters, including soil CH4 flux, temperature, and moisture.ConclusionIn the reclaimed forests, tree-mediated CH4 emissions could be an important contributor to ecosystem CH4 flux, with contributions varying by season. As these forests mature and become ecologically restored, they may significantly impact regional and global CH4 emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.