Abstract

This study presents the sustainable planning of a renewables-based energy system, which aims to fulfil the electric needs of the island by replacing the existing diesel generators with new wind farms, photovoltaic installations and hydrogen production systems. Electric system design and least cost planning analysis were concluded using historic data from both demand and supply sides. An optimal “sustainable island” scheme should ensure 100% use of renewable energy resources for power generation, while hydrogen production is ideal for covering storage and transportation needs. Due to its morphology and scale, Karpathos applies perfectly for wind and solar energy systems, due to increased solar resource (about 1790 kWh/m 2.year of global irradiation) and high wind potential (average of 9 m/s in specific locations). Therefore, this case study examines an increase in RES penetration up to 20% in the electric energy mixture, a hydrogen production plan just for the needs of transport and a more aggressive, 100% renewables scheme that ensures a self-fulfilling energy system based on indigenous renewable resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.