Abstract
This paper presents a research investigation conducted on the turning of stainless steel 316 material under a dry environment using microwave-treated cutting tool inserts. Plain tungsten carbide WC tool inserts were exposed to microwave treatment for enhancement of their performance characteristics. It was found that a 20-min microwave treatment resulted in the best tool hardness and metallurgical characteristics. These tool inserts have been used to machine SS 316 material following the Taguchi L9 design of experimental techniques. A total of eighteen experiments have been conducted by varying three main machining parameters, i.e., cutting speed, feed rate, and depth of cut, at three levels per parameter. It has been found that tool flank wear increased with all three parameters and surface roughness decreased. At the longest dept of cut, surface roughness increased. An abrasion wear mechanism was found on the tool flank face at a high machining speed and adhesion at low speed. Chips with a helical shape and low serrations have been investigated. Turning SS 316 at optimum machining parameters of 170 m/min cutting speed, 0.2 mm/rev feed rate, and 1 mm depth of cut, as obtained by the multiperformance optimization technique grey relational analysis, resulted in the best values of all machinability indicators: 242.21 µm tool flank wear, 3.81 µm mean roughness depth, and 34,000 mm3/min material removal rate, at a single parameter setting. In terms of research achievements, the percentage reduction in surface roughness is approximately 30% and represents an almost ten-fold improvement in the material removal rate. The combination of machining parameters of 70 m/min cutting speed, 0.1 mm/rev feed rate, and 0.5 mm depth of cut is optimum for the lowest value of tool flank wear when considered for single parameter optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.