Abstract

In this study, the Cladophora sp. is used to provide oxygen to the cathode of the photosynthetic biocathode membrane-less microbial fuel cell (PB-MLMFC). Non-aerated (NA-MLMFC) and mechanically-aerated (MA-MLMFC) MLMFCs are operated under similar operating conditions to evaluate the performance of PB-MLMFC with the presence of Cladophora sp. The PB-MLMFC exhibits the highest dissolved oxygen (DO) concentration, which results in a more efficient oxygen reduction reaction and a significant improvement in the electricity generation performance. The maximum power density of PB-MLMFC is 619.1 mW m−2, which is the highest power density known to be reported for algal cathode MFCs in the literature. The electrochemical analysis shows that theCladophora sp.reduces the charge (Rct) and mass transfer (Rmt) resistances of the PB-MLMFC, and improves the bioelectrochemical activity of the anode microorganisms. The study reveals that Cladophora sp. provides a cost-effective and renewable approach for practical applications of MLMFCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.