Abstract
In this study, we identified mass and charge transfer resistances for an oxygen reducing biocathode in a microbial fuel cell (MFC) by electrochemical impedance spectroscopy (EIS). The oxygen reducing biocathode was grown using nitrifying sludge as the inoculum. A standard model for charge transfer at the electrode surface combined with diffusion across a boundary layer was used. EIS measurements were performed under variation of both linear flow velocities and cathode potentials. Fitting the impedance data to the standard model at constant potential and different flow rates confirmed that increasing flow rate had no effect on charge transfer resistance, but led to a decrease in mass transfer resistance. From the variation in cathode potential at constant flow rate, a minimum in charge transfer resistance was found at 0.28 V vs. Ag/AgCl. The minimum in charge transfer resistance could be explained by the combined biochemical and electrochemical kinetics typical for bioelectrochemical systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.