Abstract
The limitation of low efficiency and complicated separation after adsorption make the practical application of biochar a huge challenge. Here, one pomelo peel-derived magnetic biochar composite, biochar supported MgFe2O4 (BMF) was fabricated and adopted for Levofloxacin (LFX) adsorption. Adsorption behaviors and mechanisms were investigated by characterization analysis, batch experiments, and data modeling. Results indicated that adsorption could be strikingly influenced by pyrolysis temperature. Adsorption kinetic was well fitted by pseudo-second-order model. Adsorption isotherm was best fitted with Freundlich model. The maximum adsorption capacity was 115 mg g−1. Moreover, hydrophobic effect played a limited contribution according to dual-mode model analysis. LFX adsorption was spontaneous and endothermic. Adsorption mechanisms were ascribed to electrostatic interactions, H-bonding, functional groups complexation, and π-π electron donor–acceptor interactions. Besides that, BMF had the potential for repeated use. This research proposed a novel and promising method for LFX or other antibiotics adsorption removal.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have