Abstract

Finding stable solutions for hydrogen storage is one of the main challenges to boosting its deployment as an energy vector and contributing to the decarbonization of the energy sector. In this context, sodium borohydride (NaBH4) has been largely studied as a hydrogen storage material due to its significant advantages, such as low pressure, stability, and high hydrogen storage density. The development of catalysts and additive materials for the on-demand hydrolysis of NaBH4 for hydrogen release is a key research area. This work studies the effects of non-toxic and environmentally friendly additives for the hydrolysis process in terms of yield, lag time, hydrogen generation rate, and gravimetric density. Specifically, four additives, including sodium carboxymethylcellulose (CMC), polyacrylamide (PAM), sodium dodecyl sulfate (SDS), and β-cyclodextrin (BCD), were studied for their application in the storage and release of hydrogen. The best results were provided by the use of sodium carboxymethyl cellulose and polyacrylamide. In the first case, a hydrolysis yield of 85%, a lag time of 70 s, a hydrogen production rate of 1374 mL·min−1·gcat−1, and a storage capacity of 1.8 wt% were obtained. Using polyacrylamide as additive, a hydrolysis yield of almost 100% was achieved, although it required a significantly higher time period for complete conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.