Abstract

The National Egyptian Agenda 2030 recently adopted the concepts of sustainable cities, mitigating and adapting to climate change. This study responded to these concepts by treating sewage to reuse it in softscaping and recycling sludge to reduce energy consumption and support heating systems by producing biogas. Of the limitations of this study, it focuses on a compound to propose a model to increase the sustainability of Egyptian cities. This study used many technologies, such as biological treatment processes, activated sludge, trickling filters, and fixed bioreactors. However, Membrane bioreactors (MBRs) have seemed to be the most suitable technology because of their low cost and footprint. Additionally, a pilot laboratory was established to simulate the sewage treatment plant. It consisted of a primary sedimentation tank followed by an MBR tank and a chlorine disinfection tank, where the sludge was fed into a cylindrical anaerobic digester. The amount of sludge collected generated 41.5 mL/day of biogas. The application of this large-scale batch reactor will produce around 38 m3/day of biogas. Applying the findings of this study to the treatment and reuse of domestic sewage and sludge can provide up to 50% of the water needed for the green area of the compound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call