Abstract

We investigated the concentrations of 57 target compounds in the different treatment units of various biological treatment processes in South Korea, including modified biological nutrient removal (BNR), anaerobic-anoxic-aerobic (A2O), and membrane bioreactor (MBR) systems, to elucidate the occurrence and removal fates of PPCPs in WWTPs. Biological treatment processes appeared to be most effective in eliminating most PPCPs, whereas some PPCPs were additionally removed by post-treatment. With the exception of the MBR process, the A2O system was effective for PPCPs removal. As a result, removal mechanisms were evaluated by calculating the mass balances in A2O and a lab-scale MBR process. The comparative study demonstrated that biodegradation was largely responsible for the improved removal performance found in lab-scale MBR (e.g., in removing bezafibrate, ketoprofen, and atenolol). Triclocarban, ciprofloxacin, levofloxacin and tetracycline were adsorbed in large amounts to MBR sludge. Increased biodegradability was also observed in lab-scale MBR, despite the highly adsorbable characteristics. The enhanced biodegradation potential seen in the MBR process thus likely plays a key role in eliminating highly adsorbable compounds as well as non-degradable or persistent PPCPs in other biological treatment processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.