Abstract

Suspension systems on commercial vehicles have become an important feature meeting the requirements from costumers and legislation. The performance of the suspension system is often limited by available catalogue components. Additionally the suspension performance is restricted by the travel speed which highly influences the ride comfort. In this article a suspension system for an articulated dump truck is optimized in sense of reducing elapsed time for two specified duty cycles without violating a certain comfort threshold level. The comfort threshold level is here defined as a whole-body vibration level calculated by ISO 2631-1. A three-dimensional multibody dynamics simulation model is applied to evaluate the suspension performance. A non-gradient optimization routine is used to find the best possible combination of continuous and discrete design variables including the optimum operational speed without violating a set of side constraints. The result shows that the comfort level converges to the comfort threshold level. Thus it is shown that the operational speed and hence the operator input influences the ride comfort level. Three catalogue components are identified by the optimization routine together with a set of continuous design variables and two operational speeds one for each load case. Thus the work demonstrates handling of human factors in optimization of a mechanical system with discrete and continuous design variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.