Abstract

PTEN-positive tumors are not susceptible to the treatment with rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR). Here, we determined the susceptibility of PTEN-positive cells to small interfering RNA for mTOR (si-mTOR) by using a novel liposomal delivery system. We prepared dicetyl phosphate-tetraethylenepentamine-based polycation liposomes (TEPA-PCL) decorated with polyethylene glycol (PEG) grafting Ala–Pro–Arg–Pro–Gly (APRPG), a VRGFR-1-targeting peptide. APRPG-PEG-decorated TEPA-PCL carrying si-mTOR (APRPG-TEPA-PCL/si-mTOR) had an antiproliferative effect against B16F10 murine melanoma cells (PTEN-positive) and significantly inhibited both the proliferation and tube formation of mouse 2H-11 endothelial-like cells (PTEN-positive). APRPG-TEPA-PCL/si-mTOR treatment did not induce Akt phosphorylation (Ser473) in either B16F10 or 2H-11 cells although there was strong phosphorylation of Akt in response to rapamycin treatment. Intravenous injection of APRPG-TEPA-PCL/si-mTOR significantly suppressed the tumor growth compared with rapamycin treatment in mice bearing B16F10 melanoma. These findings suggest that APRPG-TEPA-PCL/si-mTOR is useful for the treatment of PTEN-positive tumors. From the Clinical EditorThe authors determined the susceptibility of PTEN-positive cancer cells to small interfering RNA for mTOR by using a novel liposomal delivery system, and concluded that the method is useful in a rodent model, which may suggest potential future human applicability as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call