Abstract

Glucose oxidase (GOx) is often used to starvation therapy. However, only consuming glucose cannot completely block the energy metabolism of tumor cells. Lactate can support tumor cell survival in the absence of glucose. Here, we constructed a nanoplatform (Met@HMnO2-GOx/HA) that can deplete glucose while inhibiting the compensatory use of lactate by cells to enhance the effect of tumor starvation therapy. GOx can catalyze glucose into gluconic acid and H2O2, and then HMnO2 catalyzes H2O2 into O2 to compensate for the oxygen consumed by GOx, allowing the reaction to proceed sustainably. Furthermore, metformin (Met) can inhibit the conversion of lactate to pyruvate in a redox-dependent manner and reduce the utilization of lactate by tumor cells. Met@HMnO2-GOx/HA nanoparticles maximize the efficacy of tumor starvation therapy by simultaneously inhibiting cellular utilization of two carbon sources. Therefore, this platform is expected to provide new strategies for tumor treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call