Abstract

An algorithm is developed for the reconstruction of dynamic, gadolinium (Gd) bolus MR perfusion images of the human brain, based on quantitative susceptibility mapping (QSM). The method is evaluated in five perfusion scans obtained from four different patients scanned at 3 Tesla, and compared with the conventional analysis based on changes in the transverse relaxation rate ΔR2 * and to theoretical predictions. QSM images were referenced to ventricular cerebrospinal fluid (CSF) for each dynamic of the perfusion sequence. Images of cerebral blood flow and blood volume were successfully reconstructed from the QSM-analysis, and were comparable to those reconstructed using ΔR2 *. The magnitudes of the Gd-associated susceptibility effects in gray and white matter were consistent with theoretical predictions. QSM-based analysis may have some theoretical advantages compared with ΔR2 *, including a simpler relationship between signal change and Gd concentration. However, disadvantages are its much lower contrast-to-noise ratio, artifacts due to respiration and other effects, and more complicated reconstruction methods. More work is required to optimize data acquisition protocols for QSM-based perfusion imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.